

Low Voltage Modulators Based on Semiconductor Microresonators

Dan Dapkus and John O'Brien The Photonics Center @ USC

Program Concept

- High Q resonators enhance the coupling between waveguides.
- Low voltage modulation of the resonator Q can modulate the power transfer.
- Develop techniques for q = fabricating resonators and modulator circuits with V_p ~ 0.1 V.

μ Resonator Structures

August 16, 2000

RFLICS Kickoff Meeting

Laterally Coupled Resonator

- Air coupling and guiding
- Submicron control of coupling
- Submicron waveguide widths
- Control of waveguide and resonator wall smoothness

Vertically Coupled Resonator

- •Epilayer coupling.
- •Control coupling by epilayer thickness.
- •Flexible single mode waveguide design.
- Integration of active and passive structures.
- Separates resonator and coupler fabrication

Integration Challenges

Uniform resonator potential / current flow

Buried or ridge waveguides?

Rings or disk resonator?

Regrowth or wafer bonding?

Loss and Q Control

Residual absorption in resonator

Scattering at edges

Controlled coupling

Insertion loss

Mode matching

Tapered Mode Couplers

(a) 0.5 μm

(a) 0.5 μm

(b) 0.5 μm

(c) 1 1 to junc.

(d) 1 to junc.

(e) 1 to junc.

(e) 1 to junc.

(f) 2 to junc.

(f) 3 to junc.

(f) 4 t

August 16, 2000

RFLICS Kickoff Meeting

Resonator Response

$$T = \frac{j(\omega - \omega_0)/\omega_o + (Q_l^{-1} - Q_c^{-1})/2}{j(\omega - \omega_0)/\omega_o + (Q_l^{-1} + Q_c^{-1})/2}$$

At resonance:

T is 0 when $Q_I = Q_c$

T exhibits a π phase change

T is a minimum unless $Q_1 >> Q_c$ then T = 1

August 16, 2000

RFLICS Kickoff Meeting

Modulation Mechanisms

Resonance Tuning

Electro optic Effect Electroreflectance Effect Free Carrier

Q Tuning

Electroabsorption
Gain
Electroreflectance

August 16, 2000

RFLICS Kickoff Meeting

Q

μ Disk Resonant Components

Resonator Circuits

- Shaped Resonance Response
- Venier Resonance Control

- Traveling Wave Drive
- Additive Phase Changes
- Push Pull Drive

Modeling Tools

Finite Difference Mode Solvers

Physics Based Models

FDTD

August 16, 2000

RFLICS Kickoff Meeting

Waveguide / resonator coupling

Coupling Coefficeint

August 16, 2000

RFLICS Kickoff Meeting

Technology Output

- 1. Low Voltage Modulators with low insertion loss
- 2. Vertically coupled WDM component technology.
- 3. Suite of sophisticated modeling tools.
- 4. Deliverable modulators for system trials.

Tasks and Milestones

- Task 1 Modeling of Modulator Design and Characteristics
 - Preliminary designs of EA and ER modulators. 3Q
 - Theoretically optimized coupling design. 8Q
- Task 2 Modulator Fabrication Technology Advancement
 - Resonator fabrication approach chosen. 4Q
 - Fabrication process optimized. 8Q
 - Vertical Integration approach choice. 10Q
- Task 3 Modulator Optimization
 - Residual loss near E_G characterized vs λ. 3Q
 - EA vs. ER choice made. 8Q
 - Ring vs Disk scattering loss measurement. 4Q
 - Measurement of Q-limited modulation limit. 10Q
 - Low resistance contact demonstrated. 4Q
 - Air bridge technology demonstration. 10Q
- Task 4 Modulator Demonstration, Characterization and Delivery
 - DC characterization setup complete. 4Q
 - High frequency modulation characterization setup complete. 6Q
 - Eight (8) low V_{π} modulators delivered in years 1-3 according to selected integrator. 12Q